RSS

PHƯƠNG TRÌNH ĐẲNG CẤP ĐỐI VỚI SINX VÀ COSX

1> 2sin2x – 5sinx.cosx – cos2x = -2

Nếu như: sinx = 0 thì cosx = 1 và ngược lại

Xét cos2x = 0 ó 2 = -2 là vô lí, vậy cos2x ≠ 0

ó 2sin2x/ cos2x – 5sinx.cosx/ cos2x – cos2x/ cos2x = -2/ cos2x

ó 2tan2x – 5tanx – 1 = -2. (1 + tan2x)

ó 2tan2x – 5tanx – 1 = -2 - 2tan2x

ó 2tan2x – 5tanx – 1 + 2 + 2tan2x = 0

ó 4tan2x – 5tanx + 1 = 0

Đặt tanx = t
t1 = 1
t2 = ¼

·         t1 = 1 ó tanx = 1
          
           ó tanx = π/4
           
           ó      x = π/4 + k π  (k ∈ Z)

·         t2 = ¼ ó tanx = ¼
                      
           ó tanx = arc tan1/4
                      
           ó      x = arc tan ¼ + k π   (k ∈ Z)



2> 4sin2x + 3√3sin2x – 2cos2x = 4
ó 4sin2x + 3√3.2sinx.cosx – 2cos2x = 4

Xét sin2x = 0 ó -2 = 4 là vô lí, vậy sin2x ≠ 0

ó 4sin2x/ sin2x + 6√3.sinx.cosx/ sin2x – 2cos2x / sin2x = 4/ cos2x

ó 4 + 6√3cotx – 2cot2x = 4. (1 + cot2x)

ó 4 + 6√3cotx – 2cot2x – 4 – 4cot2x = 0

ó -6cot2x + 6√3cotx = 0

ó cotx. (-6cotx + 6√3) = 0

ó cotx = 0
     cotx = (-6√3/ 6) = -√3

ó      x =           k π
          x = π/6 + k π  (k ∈ Z)



3> 6sinx – 2cos3x = 5sin2x.cosx
ó 6sinx – 2cos3x = 5.2sinx.cosx.cosx
ó 6sinx – 2cos3x = 10.sinx.cos2x

Xét cos3x = 0 ó 6 = 0 là vô lí, vậy cos3x ≠ 0

ó 6sinx/ cos3x – 2cos3x/ cos3x = 10.sinx.cos2x/ cos3x

ó 6. (1 +tan2x) –  2                    = 10.tanx

ó 6 + 6tan2x – 2 – 10tanx          = 0

ó 6tan2x – 10tanx + 4                = 0

Đặt tanx = t
t1 = 1
t2 = 2/3

·         t1 = 1 ó tanx = 1
           
          ó tanx = π/4

          ó      x = π/4 + k π (k ∈ Z)


·         t2 = 2/3 ó tanx = 2/3
            
             ó tanx = arc tan2/3
          
             ó      x = arc tan2/3 + k π  (k ∈ Z)



4> 2cos3x – sin3x = cosx + sinx

Xét cos3x = 0 ó -1 = 1 là vô lí, vậy cos3x ≠ 0

ó 2cos3x/ cos3x – sin3x/ cos3x = cosx/ cos3x + sinx/ cos3x

ó          2             -  tan3x          = 1/ cos2x     + sinx/cosx . 1/ cos2x

ó          2             -  tan3x          = (1 + tan2x) + tanx.(1 + tan2x)

ó          2             -  tan3x          = 1 + tan2x + tanx + tan3x

ó 2 – tan3x – 1 – tan2x – tan – tan3x = 0

ó -2tan3x – tan2x – tan + 1 = 0

Đặt tanx = t
t1 = ½

·         t1 = ½ ó tanx = ½
     
           ó tanx = arc tan1/2
     
           ó      x = arc tan1/2 + k π  (k ∈ Z)



5> sinx. 2sinx.cosx + sin3x = 6cos3x
ó 2sin2x.cosx + 3sinx - 4sin3x = 6cos3x

Xét sin3x = 0 ó 0 = 6 là vô lí, vậy sin3x ≠ 0   (lấy sin3x xét để có thể làm mẫu chung)

ó 2sin2x.cosx/ sin3x + 3sinx/sin3x  – 4sin3x/sin3x = 6cos3x/sin3x

ó           2cotx          + 3/sin2x         - 4                  = 6cot3x

ó           2cotx       + 3. (1 + cot2x)  - 4                  = 6cot3x

ó           2cotx       + 3 + 3cot2x       - 4                  = 6cot3x

ó  -6cot3x + 3cot2x + 2cotx -1 =0

Đặt cotx = t
t1 = -0.6
t2 =  0.6
t3 = ½

·         t1 = -0.6 ó cotx = -0.6
     
         ó cotx = arc cot-0.6
         
              ó      x = arc cot-0.6 + k π  (k ∈ Z)


·         t2 = 0.6 ó cotx = 0.6
          
             ó cotx = arc cot 0.6
         
             ó      x = arc cot 0.6 + k π  (k ∈ Z)


·         t3 = ½ ó cotx = ½
   
           ó cotx = arc cot ½

     
           ó     x = arc cot ½ + k π  (k ∈ Z)

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

1 nhận xét:

Unknown nói...

bài 3) 6sinx/ cos3x = 6. (1 +tan^2x) cho em hỏi ngu sao bằng vậy ạ

Đăng nhận xét