RSS

PHƯƠNG TRÌNH BẬC 2 THEO 1 HÀM SỐ LƯỢNG GIÁC

1.    2sin2x – 3sinx + 1 = 0

Đặt sinx = 1
ĐK:  -1 ≤  t ≤  1
t1 = 1
t2 = ½

  • ·         t1 = 1 ó sinx = 1

                    ó sinx = π/2
                    ó      x =       π/2 + k2 π
                              x = π – π/2 +k2 π
                    ó      x = π/2 + k2 π
                              x = π/2 + k2 π
  • ·         t2 = ½ ó sinx = ½

                     ó sinx = π/6
                     ó      x =        π/6 + k2 π
                               x = π – π/6 + k2 π
                     ó      x =         π/6 + k2 π
                               x =      5 π/6 + k2 π   (k ∈ Z)



2.    6cos2x + 5sinx – 7 = 0

ó 6. (1 – sin2x) + 5sinx – 7 = 0

ó  6 – 6sin2x + 5sinx – 7 = 0

ó -6sin2x + 5sinx – 1 = 0

Đặt sinx = t
ĐK:  -1 ≤  t ≤  1
t1 = ½
t2 = 1/3

  • ·         t1 = ½ ó sinx = ½

               ó sinx = π/6
               ó      x =        π/6 + k2 π
                         x = π – π/6 + k2 π
                ó     x =    π/6 + k2 π
                         x = 5 π/6 + k2 π

  • ·         t2 = 1/3 ó sinx = 1/3

                            ó sinx = arc sin1/3  
                            ó      x =        arc sin1/3 +k2 π
                            ó      x = π – arc sin1/3 + k2 π  (k ∈ Z)



3.    2cos2x + 5sinx – 4 =0

ó 2. (1 – sin2x) + 5sinx – 4 =0

ó 2 – 2sin2x + 5sinx – 4 = 0

ó -2sin2x + 5sinx – 2 = 0


Đặt sinx = t
ĐK:  -1 ≤  t ≤  1
t1 = 2 (loại)
t2 =1/2

  • ·         t2 = ½ ó sinx = ½

                
                     ó sinx = π/6
                     ó      x =        π/6 + k2 π
                               x = π – π/6 + k2 π
                     ó      x =     π/6 + k2 π
                               x =  5 π/6 + k2 π  (k ∈ Z)



4.    2cos2x – 8cosx + 5 =0

ó 2. (2cos2x – 1) – 8cosx + 5 = 0

ó 4cos2x – 2 – 8cosx + 5 = 0

ó 4cos2x – 8cosx + 3 = 0

Đặt  cosx = t
ĐK:  -1 ≤  t ≤  1
t1 = 3/2 (loại)
t2 = ½

  • ·         t2 = ½ ó cosx = ½

                    ó cosx = π/6
                    ó       x =       π/6 + k2 π
                               x = π – π/6 + k2 π
                   ó        x =    π/6 + k2 π
                               x = 5 π/6 + k2 π (k ∈ Z)



5.    5tan – 2cotx – 3 = 0

ó 5tan – 2/tanx – 3 = 0

ó5tan2 – 3tan – 2 =0

Đặt tan = t
t1 = 1
t2 = -2/5

  • ·         t1 = 1 ó tanx = 1

                    ó tanx = π/4
                    ó tanx = π/4 + k π

  • ·         t2 = 2 ó tanx = -2/5

                    ó tanx = arc tan-2/5
                    ó      x = arc tan-2/5 + k π  (k ∈ Z)



6.    3/cos2x = 3 + 2tan2x

ó 3. (1 + tan2x) = 3 + 2tan2x

ó 3 + 3tan2x = 3 + 2tan2x

ó 3tan2x – 2tan2x + 3 – 3 =0

ó tan2x = 0

ó   tanx = k π

ó        x = k π (k ∈ Z)




7.    2. (sin4x - cos4x) = 2sin2x -1

ó 2. [(sin2x)2 - (cos2x)2] = 2sinxcosx -1

ó 2. (sin2x – cos2x).(sin2x – cos2x) = 2sinxcosx -1

ó 2. (sin2x – cos2x) . 1 = 2sinxcosx – 1

ó 2sin2x – 2cos2x – 2sinxcosx – 1 = 0

ó 2sin2x/cos2x – 2cos2x/cos2x – 2sinxcosx/cos2x – 1/cos2x = 0

ó 2tan2x – 2 – 2tanx + 1 + tan2x = 0

ó 3tan2x – 2tanx - 1 = 0

Đặt tanx = t
t1 = 1/3
t2 = -1


  • ·         t1 = 1/3 ó tanx = 1/3

                       ó tanx = arc tan 1/3
                       ó      x = arc tan1/3 + k π


  • ·         t2 = -1 ó tanx = - 1

                     ó tanx  =  -π/4
                     ó      x  =  -π/4 + k π   (k ∈ Z)



8.    3cot2x + 2√3cotx + 1 = 0

Đặt cot = t
t1 = -√3/3


  • ·         t1 = -√3/3 ó cotx = -√3/3

                           ó cotx = - π/3
                        ó     x = - π/3 + k π  (k ∈ Z)



  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

0 nhận xét:

Đăng nhận xét