1.
2sin2x – 3sinx + 1 = 0
Đặt sinx = 1
ĐK: -1 ≤ t ≤ 1
t1 = 1
t2 = ½
- · t1 = 1 ó sinx = 1
ó sinx = π/2
ó x = π/2
+ k2 π
x = π – π/2 +k2 π
ó x = π/2 + k2 π
x = π/2 + k2 π
- · t2 = ½ ó sinx = ½
ó sinx
= π/6
ó x =
π/6 + k2 π
x = π
– π/6 + k2 π
ó x =
π/6 + k2 π
x = 5 π/6
+ k2 π (k ∈ Z)
2.
6cos2x + 5sinx – 7 = 0
ó 6.
(1 – sin2x) + 5sinx – 7 = 0
ó 6 – 6sin2x + 5sinx – 7 = 0
ó
-6sin2x + 5sinx – 1 = 0
Đặt sinx = t
ĐK: -1 ≤ t ≤ 1
t1 = ½
t2 = 1/3
- · t1 = ½ ó sinx = ½
ó sinx
= π/6
ó x =
π/6 + k2 π
x = π – π/6 + k2 π
ó x
= π/6 + k2 π
x = 5 π/6 + k2 π
- · t2 = 1/3 ó sinx = 1/3
ó sinx
= arc sin1/3
ó x =
arc sin1/3 +k2 π
ó x = π – arc sin1/3 + k2 π (k ∈ Z)
3.
2cos2x + 5sinx – 4 =0
ó 2.
(1 – sin2x) + 5sinx – 4 =0
ó 2 –
2sin2x + 5sinx – 4 = 0
ó
-2sin2x + 5sinx – 2 = 0
Đặt sinx = t
ĐK: -1 ≤ t
≤ 1
t1 = 2 (loại)
t2 =1/2
- · t2 = ½ ó sinx = ½
ó sinx = π/6
ó x
= π/6 + k2 π
x = π – π/6 + k2 π
ó x
= π/6 + k2 π
x = 5 π/6 + k2 π (k ∈ Z)
4.
2cos2x – 8cosx + 5 =0
ó 2.
(2cos2x – 1) – 8cosx + 5 = 0
ó 4cos2x
– 2 – 8cosx + 5 = 0
ó 4cos2x
– 8cosx + 3 = 0
Đặt cosx = t
ĐK: -1 ≤ t
≤ 1
t1 = 3/2 (loại)
t2 = ½
- · t2 = ½ ó cosx = ½
ó cosx
= π/6
ó x = π/6 + k2 π
x = π – π/6 + k2 π
ó x = π/6 + k2 π
x = 5 π/6 +
k2 π (k ∈ Z)
5.
5tan – 2cotx – 3 = 0
ó 5tan
– 2/tanx – 3 = 0
ó5tan2
– 3tan – 2 =0
Đặt tan = t
t1 = 1
t2 = -2/5
- · t1 = 1 ó tanx = 1
ó tanx
= π/4
ó tanx
= π/4 + k π
- · t2 = 2 ó tanx = -2/5
ó tanx
= arc tan-2/5
ó x = arc tan-2/5 + k π (k ∈ Z)
6.
3/cos2x = 3 + 2tan2x
ó 3.
(1 + tan2x) = 3 + 2tan2x
ó 3 +
3tan2x = 3 + 2tan2x
ó 3tan2x
– 2tan2x + 3 – 3 =0
ó tan2x
= 0
ó tanx =
k π
ó x = k π (k ∈ Z)
7.
2. (sin4x - cos4x) = 2sin2x
-1
ó 2.
[(sin2x)2 - (cos2x)2] = 2sinxcosx
-1
ó 2. (sin2x
– cos2x).(sin2x – cos2x) = 2sinxcosx -1
ó 2.
(sin2x – cos2x) . 1 = 2sinxcosx – 1
ó 2sin2x
– 2cos2x – 2sinxcosx – 1 = 0
ó 2sin2x/cos2x
– 2cos2x/cos2x – 2sinxcosx/cos2x – 1/cos2x
= 0
ó 2tan2x
– 2 – 2tanx + 1 + tan2x = 0
ó 3tan2x
– 2tanx - 1 = 0
Đặt tanx = t
t1 = 1/3
t2 = -1
- · t1 = 1/3 ó tanx = 1/3
ó tanx
= arc tan 1/3
ó x = arc tan1/3 + k π
- · t2 = -1 ó tanx = - 1
ó tanx
= -π/4
ó x
= -π/4 + k π
(k ∈ Z)
8.
3cot2x + 2√3cotx + 1 = 0
Đặt cot = t
t1 = -√3/3
- · t1 = -√3/3 ó cotx = -√3/3
ó cotx = - π/3
ó x
= - π/3 + k π (k ∈ Z)
0 nhận xét:
Đăng nhận xét