RSS

Giải phương trình sinx, cosx

1.     2sinx.cosx – 3sin2x = 0

ó 2sin2x – 3sin2x         = 0

ó -sin2x                        = 0

ó      -2x                        =         k2π
         -2x                        = π – k2π

ó         x                        =            -k2 π/2
             x                        = - π/2 + k2 π  ( k ∈ Z).




2.    2sinx + √2sin2x   = 0

ó 2sinx + √2.sinx.cosx   = 0

ó 2sinx . (√2cosx +1 )    = 0

ó 2sinx = 0                       hay √2cosx + 1 = 0

ó 2sinx = 0                      hay √2cosx = π

ó        x =         k2π         hay       √2x =  π + k2π
            x = π +  k2π         hay       √2x = -π + k2π
ó        x =       k2π/2        hay           x = π/√2 + k2π/√2
            x = π/2 + k2 π/2   hay           x = - π/√2 + k2π/√2   ( k ∈ Z).




3.    Sinx + sin2x + sin3x = 0

ó sin3x + sinx + sin2x = 0

ó 2sin (3x+x)/2 . cos (3x-x)/2 + sin2x = 0

ó 2sin2x .cosx + sin2x = 0

ó sin2x (2cosx + 1) = 0

ó sin2x = 0 hay 2cosx + 1 = 0

ó sin2x = 0                      hay cosx = -1/2

ó sin2x = 0                      hay cosx =  2π/3

ó     2x =        k2 π         hay     x =   2 π/3 + k2 π
         2x = π + k2 π          hay     x = -2 π/3 + k2 π

ó        x =           k2 π/2    hay     x =  2 π/3 + k2 π
           x = π/2 + k2 π/2    hay     x = -2 π/3 + k2 π   ( k ∈ Z).





4.    2cos4x – 2sin4x + 1 = 0

ó 2. [(cos2x)2 – (sin2x) 2 +1 = 0

ó 2. (cos2x – sin2x).(cos2x + sin2x) + 1= 0

ó2 cos2x . 1 + 1 = 0

ó 2cos2x + 1 = 0

ó   cos2x       = -1/2

ó   cos2x       = 2 π/3

ó         2x =  2 π/3 + k2 π
             2x = -2 π/3 + k2 π

ó           x =    π/3 + k2 π/2
               x =   -π/3 + k2 π     ( k ∈ Z).




5.    Sin2x + cos2x = 0

ó (sinx . cosx)2 +1/8          = 0

ó (1/2 . 2.sinxcosx)2 + 1/8 = 0

ó (1/2 . sin2x )2          + 1/8 =0

ó ¼ . sin22x               + 1/8 = 0

ó ¼ . (1 – cos4x)/2 + 1/8 = 0

ó 1/8 .(1 – cos4x)   + 1/8 = 0

ó 1/8 .(1 – cos4x)            = -1/8

ó        (1 – cos4x)            =  -1

ó         1 – cos4x              = -1

ó               cos4x               = -2

ó                cos4x              = 2 (loại)
Vì -1 cos 1





6.    Sin4x + 2cos2x = 0

ó 2sin2x.cos2x + 2cos2x = 0

ó cos2x . (2sin2x +2) = 0

ó cos2x = 0                       hay 2sin2x +2 = 0

ó cos2x = π/2                    hay   sin2x        = 2/2

ó cos2x = π/2                    hay   sin2x        = - π/4

ó       2x =  π/2 + k2 π       hay       2x = -π/4 + k2 π
           2x = -π/2 + k2 π       hay       2x = π + π/4 + k2 π

ó         x =   π/4 + k2 π/2    hay        x = -π/8 + k2 π/2
             x =  -π/4 + k2 π/2    hay        x = 3π/8 + k2 π/2   ( k ∈ Z).




7.    sinx.cosx.cos2x – √3/8 = 0

ó (½. 2.sinxcosx) . cos2x - √3/8 =0

ó 1/2 . sin2x . cos2x - √3/8 = 0

ó ½ .½ .2.sin2xcos2x -√3/8 = 0

ó ¼ .sin4x – √3/8 = 0

ó ¼. sin4x            = √3/8

ó      sin4x            = √3/2

ó      sin4x            = π/3

ó          4x             =        π/3 + k2 π
              4x             = π – π/3 + k2 π

ó            x             =      π/12 + k2 π/4
                x             =      π/6   + k2 π/4 ( k ∈ Z).


  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

0 nhận xét:

Đăng nhận xét