RSS

Phương trình bậc nhất theo sinx và cosx

Công thức tính:                √A2 + B2 =
             vd: √(√3)2 + 12 = 2




a>   √3cosx - sinx = √2                     


ó√3/2 cosx – ½ sinx = 2/2

ócos3/2 cosx – sin½ sinx = 1

ócos π/2 cosx – sin π/6 sinx = 1    => [cos π/2 cosx – sin π/6 sinx]

ó -cos (π/6 – x) = 1

ó -cos (π/6 – x) = 0

ó π/6 – x = 0 + k2π
     π/6 – x = -0 + k2π

ó        - x = - π/6 + k2π
            - x = - π/6 + k2π

ó          x =   π/6 + k2π
              x =   π/6 + k2π     (k ∈ ℤ)




b>   Cosx - √3sinx = -1

ó ½ cosx - √3/2 sinx = -1/2

ó sin ½ cosx – cos √3/2 sinx = -1/2

ó sin π/6 cosx - cos π/6 sinx = -1/2    => [sin π/6 cosx - cos π/6 sinx]

ó sin (π/6 – x) = - π/6

ó π/6 – x = - π/6 + k2 π
     π/6 – x = π + π/6 + k2 π

ó        - x =     - π/6 – π/6 + k2π
            - x = π + π/6 – π/6 + k2π

ó          x = - π/3 + k2π
              x =    π + k2π     (k ∈ ℤ)




c>   sinx + √3cosx = 2

ó ½ sinx + √3/2 cosx = 2/2

ó cos ½ sinx + sin √3/2 cosx = 1

ó cos π/3 sinx + sin π/3 cosx = 1    => [ sinx.cos π/3 + cosx.sin π/3]

ó sin (x + π/3) = 1

ó sin (x + π/3) = π/2

ó        x + π/3 =       π/2 + k2π
            x + π/3 = π – π/2 + k2π

ó        x           =        π/2 – π/3 + k2π
            x           = π – π/2 – π/3 + k2π

ó        x            = π/6 + k2π
            x           = π/6 + k2π   (k ∈ ℤ)




d>   3sinx + 4cosx = 5

ó 3/5 sinx + 4/5 cosx = 5/5

ó cos 3/5 sinx + sin 4/5 cosx = 1

Bấm SHIFT cos 3/5 và sin 4/5 sẽ ra số lẽ.
Đặt cos α = 3/5, sin α = 4/5

ó cos α.sinx + sin α.cosx = 1       => [sinx.cos α + cox.sin α]

sin (α + x) = 1

ó sin (α + x) = π/2

ó       α + x   =       π/2 + k2 π
           α + x   = π – π/2 + k2π

ó             x   = - α + π/2 + k2π
                 x   = - α + π/2 + k2π  (k ∈ ℤ)



e>   4sin3x + cos3x = 4

ó 4/√17 sin3x + 1/√17 cos3x = 4/√17

  Đặt cos α = 4/√17, sin α = 1/√17

cos α.sinx + sin α.cosx = 4/√17    => [sinx.cos + cosx.sin α]

ó sin (α + x)= 4/√17   

ó sin (α + x) = 1.33 (loại)
Vì -1 ≤ cos ≤ 1



f>    sin2x + sin2x = ½
ó sin2x + (1 – 2cos2x)/2 = ½

ó sin2x + ½ - ½ cos2x = ½

ó sin2x – ½ cos2x = 0

ó 2√5/5 sin2x - √5/5 cos2x = 0

Đặt cos α = 2√5/5 sin2x, sin α = √5/5 cos2x

ó cos α.sin2x + sin α.cos2x = 0    => [sin2x.cos α + cos2x.sin α]

ó sin(α+ 2x) = 0

ó α + 2x =       0 + k2π
     α + 2x = π - 0 + k2π

ó       2x =     - α + k2π
           2x = π - α + k2π

ó         x =        - α/2 + k2π/2
             x = π/2 – α/2 + k2π/2   (k ∈ ℤ)




  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

0 nhận xét:

Đăng nhận xét